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ABSTRACT

The multi-material size optimization of transmission tower trusses is carried out in the
present study. Three real-size examples are designed, and statically analyzed, and the Black
Hole Mechanics Optimization (BHMO) algorithm, a recently developed metaheuristic
optimizer methodology, is employed. The BHMO algorithm's innovative search strategy,
which draws inspiration from black hole quantum physics, along with a robust mathematical
kernel based on the covariance matrix between variables and their associated costs,
efficiently converges to global optimum solutions. Besides, three alloys of steel are taken
into account in these examples for discrete size variables, each of which is defined in the
problem by a weighted coefficient in terms of the elemental weight. The results also indicate
that using multiple materials or alloys in addition to diverse cross-sectional sizes leads to the
lowest possible cost and the most efficient solution.
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1. INTRODUCTION

Transmission towers are indispensable in the industrial landscape, serving as the linchpin for
efficient electricity distribution. These structures, often inconspicuous yet vital, facilitate the
transfer of power from remote generation plants to urban centers. Their significance lies in
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forming resilient power grids that withstand adverse weather, ensuring uninterrupted
electricity flow. Interconnecting networks, transmission towers allow surplus power transfer
between regions, optimizing resource utilization. However, their optimization is imperative.
Efficiency improvements and reduced energy losses contribute to sustainability, while cost-
effective designs and technological advancements enhance the economic viability of power
distribution systems. Incorporating smart grid technologies and eco-friendly practices not
only improves performance but also minimizes the environmental impact. In essence, the
careful optimization of transmission towers is crucial for bolstering the reliability,
sustainability, and cost-effectiveness of power distribution networks, thereby shaping the
future of industry and society.

The construction of transmission towers, which serve to keep conductors and ground
wires, is now regarded as among the most crucial aspects of electrical power line
transferring and distribution. In addition to their vital role in community development, their
masts are thought to account for 35-45% of the cost of constructing electricity transmission
lines [1]. In today's increasingly competitive economic world, possessing an optimal design
at the lowest possible cost while providing acceptable performance and satisfying constraints
is an integral component of any design [2]. Steel lattice truss transmission towers are
typically preferred among concrete, steel polygonal, wood, and hybrid ones with regard to
their high strength-to-weight ratio [3]. Truss structures are a broad class encompassing a
variety of structure types including bridges, towers, cranes, etc. They are idealized as being
simple to analyze and designed to withstand strong axial loads used for a variety of
applications. Design variables associated with truss optimization problems include size
(choosing the most optimal cross-section), layout (figuring out the optimum geometry), and
topology (deciding on the most suitable number of parts) [4].

Numerous gradient-based mathematical approaches have been developed over the past
few decades with the aim of solving optimization problems, but not all of them have proven
effective for every problem. For instance, gradient-based optimization frameworks need to
calculate a great deal of functional gradients in addition to an appropriate starting point.
Likewise, the implementation of these methodologies becomes difficult and unstable in
optimization problems when the objective function is complicated or contains multiple local
optima [5]. Thus, researchers proposed metaheuristic algorithms as an effective alternative
to common optimization techniques. These algorithms were inspired by metaphors from
physics, mathematical rules, or other natural phenomena, such as swarm intelligence and
evolution. Metaheuristic algorithms with repetitive behavior are capable of seeking global or
near-global optimal solutions that are appropriate for an engineering design in
discontinuous, non-smooth, complex, and NP-complete problems [6]. Hence, metaheuristic
algorithms are increasingly gaining popularity in structural optimization applications due to
their efficiency, such as their independence from gradient information and adept handling of
constraints, as well as their reliability on promising solutions and robust performance in a
wide range of applications [7]; as well, numerous metaheuristic algorithms have been
developed and examined by scholars due to the no free launch theorem [6-17], which claims
that all optimization problems are unable to be solved by a single metaheuristic algorithm
[10].

Transmission tower optimization was carried out using such dynamic [18] and non-linear
programming [19] before 2000 when gradient-based methodologies were common;
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however, this area of study with the aim of weight minimization as a function of the overall
cost has been extensively examined over recent years by employing metaheuristic
algorithms; for the paradigm, the following algorithms (or modified or hybrid ones)—
genetic [1,20-22], simulated annealing [3,23,24], particle swarm optimization [25,26],
firefly [9,27], and marine predators [11]—have dealt with transmission tower optimization
problems with different kinds of design variables. In the current research, the cross-sectional
areas and the materials used in components served as the design variables in a discrete space
to optimize the transmission tower real-size examples. The multi-material optimization
problems have been the subject of numerous studies in this field of study [9,26,28-31].

Metaheuristic algorithms can be categorized according to their metaphors, as previously
mentioned. Genetic algorithms [32], particle swarm optimization [33], ant colony
optimization [34], etc. are well developed by taking inspiration from phenomena of nature
and animal behaviors such as biological laws and evolution. The principles and
characteristics of the covariance matrix are also taken into consideration when developing
the CMA-ES [35] and ECM [8], Black Hole Mechanics Optimization (BHMO) [6], and
Enriched firefly algorithm [9]. As well, imperialist competitive algorithms [36] and
teaching-learning-based optimization [37] have emerged by taking into account social
behavior. Physical-based algorithms, such as simulated annealing [38], tabu search [39],
harmony search [40], BHMO [6], and others, are one of the categories that interest scholars.
The recently developed BMHO algorithm, which has not been used in transmission tower
optimization, is chosen as the optimizer algorithm in this study. This algorithm has
demonstrated significant outcomes in several kinds of optimization matters [6].

In spite of the considerable attention devoted by researchers to the optimization of
transmission towers, the impact of employing multilateral approaches in structural design
has not yet been adequately explored. Consequently, this study aims to concurrently
examine the influence of material composition and cross-sectional area as design variables
within an optimization framework. This approach has been applied to real-size structures,
providing a practical example for the industry. The investigation is intended to fill the
existing gap in understanding and contribute to the enhancement of transmission tower
design methodologies.

The rest of the current study is organized as follows after this introduction. Section 2
presents a definition of the transmission tower metaheuristic-based optimum design. A brief
overview of the BHMO algorithm's concept and formulation in section 3. In section 4, three
transmission tower is chosen as a numerical example, and the results are given. Concluding
remarks are included in section 5.

2. PROBLEM DEFINITION
According to earlier relevant research and using their notation, this section provides an
overview introduction to the elements of truss structures in the multi-material size

optimization problem [9].

2.1. Structural Design
The comprehensive design criteria of the AISC 360-22 code have been incorporated into
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the structural design of transmission truss towers. In the following, some assumptions are
provided.

2.2. Load Cases

Each example affects a single load case that is applied to the top nodes in the direction of
x with a 100 kN force. Loads are applied gradually under static loading circumstances.

2.3. Structural Analysis

The direct stiffness method of the finite element method is used to perform the analysis
of the spatial transmission tower trusses. Meanwhile, the effects of material and geometrical
nonlinearity are disregarded; as an outcome, the linear-statical analysis is applicable.

2.4. Design Criteria

The AISC 360-22 code conditions must be addressed during the design phase with the
aim of regulating elemental compressive and tensile strength. Constraints on active
degrees of freedom in terms of displacement are likewise checked to be restricted for each
transmission tower truss.

2.5. Structural Optimal Design

In this subsection, the optimum design of the transmission tower trusses utilizing
metaheuristic algorithms is formulated and the problem is defined. However, within this
framework, as previously pointed out, a metaheuristic algorithm seeks a possible superior
solution by updating its mechanisms for a defined problem in each iteration to find the
optimal solution. The answer for an engineering design is appropriate, even though there is
no guarantee that the global optimum will be obtained [2].

2.6. Objective Function

The metaheuristic optimizer algorithm, as already mentioned before, addresses the
minimization of the total elemental material weight of the transmission tower truss as a
function of the overall cost. Thus, the objective function of an optimization problem
involving different sizes of cross-sections with multiple materials can be written as Eq. (1):

W (XDiscrete) = f pi A I‘iCi (1)

where W(Xpiscrete) denotes the overall weight of the transmission tower truss with NE
element number, and pi, Ai, Li, and C; are respectively the material density, cross-sectional
areas, length, and material alloy cost of the i element. It should be pointed out, that the
algorithm seeks in a continuous search space; thus, by using Eg. (2) the continuous design
vector (Xcontinuous) Can be transformed into a discrete search space (Xpiscrete) according to [25].

X = ﬂoor(xcominuous) (2)

Discrete
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2.7. Design Variables

The given list of sections includes 200 hole-circular sections with areas ranging from 0.1
cm2 to 20 cm2, with intervals of 0.1 cm2, and with three different types of steel alloys.
Therefore, the algorithm chooses intelligently from the 600 sections to use the cross-
sectional areas of the list as design variables to decide on the optimum weight. These design
variables have been summarized in Table 1.

Table 1: The design variables corresponding with the considered problems

Problem Material Cross-Section Area
Transmission Tower 1 v v
Transmission Tower 2 v v
Transmission Tower 3 v v

2.8. Constraints Handling

Due to its simple manner of use, the penalty function method has been extensively
utilized in the field of structural optimization among the different approaches to handling
constraints in an optimization problem [12]; As it turns out, the following describes how the
constraints in this study, which are dictated by elemental stress and nodal displacement, got
handled (Eq. 3):

Omin S0y < O e=12,...,NE
)

n S8, <6 d=12,...,ND @)
AninSA%SAmax e=1’2‘K'NE

min

where o, d, A, and ND represent the elemental stress, nodal displacement, elemental
cross-sectional area, and number of active degrees of freedom, respectively, and also,
indices e and d are noted respectively current element and node.

The total violation is applied to the overall weight of the transmission tower truss in Eq.
(1) when the criteria in Eq. (3) are violated as Eq. (4):

P(x) = (L+av)” xW(X) 4)

where P(x) represents the penalized weight of the structure which should be minimized
and v is the total violation; it should be noted that « and g are penalty coefficients set
experimentally.

3. BLACK HOLE MECHANICS OPTIMIZATION

The Schwarzschild and Kerr black hole mechanics drawback in 2020 served as the basis for
Kaveh et al.'s development of the BHMO algorithm. The BHMO utilizes a potent Kernel-
based mathematical technique to evaluate the covariance matrix between each variable and
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its relative cost with the aim of figuring out the most optimal orientation of variables. This
strategy allows variables to be rapidly redirected to prevent trapping in local optima. This
algorithm proved beneficial in several domains, including structural optimal design [6] and
other areas [16]. In this section, the BHMO methodology and its computational details are
briefly discussed in accordance with the developer's paper [6] as follows (for more details,
please see the referenced work):

Step 1: Initialization

The initial variable positions of the BHMO are generated in the search space randomly,
like the other metaheuristic algorithms. However, the difference is that the BHMO can direct
each variable based on its relative cost directly to the global optima by utilizing the
covariance matrix properties. Each particle is considered as a star and defined in a 4D space-
time dimension, with each star's mass being a relative cost function.

Step 2: Creation of the Kerr Black Hole

In order to determine their relative cost as output and to create the covariance matrix, the
objective function one can be evaluated using the input of random initial positions. Each
variable must be considered separately in 2D space at the moment in order to compute
covariance. At last, the Kerr black hole position can be chosen when data is transformed
around a center. It should also be remarked that this phase serves as a global search strategy.

Step 3: Creation of the Schwarzschild Black Hole

It is necessary for establishing a local search mechanism since the Kerr black hole
functions as a global search mechanism. Another benefit is that as the optimal solution is
likely to be determined with the least amount of data after transformation, the neighborhood
might be considered a key location when seeking the answer. As a result, it qualifies as the
Schwarzschild black hole.

Step 4: Data Elimination

After re-evaluating and sorting the data in each phase, the distant data should be
eliminated based on elite selection since the generation of data in each step will lead to a
decrease in the algorithm's speed and efficiency.

Step 5: Termination Criteria

The procedure's termination criteria should be checked at the final stage of the entire
procedure. In this work, a predetermined number of function evaluations (NFE) is set up for
terminating the procedure when the constraints are not violated by the solution obtained by
Eq. (4).

The flowchart of the computational details of the utilized method through this paper is
illustrated in Fig. (1).
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Figure 1: The computational details of the utilized method through the current paper

4. NUMERICAL EXAMPLES

This section features three real-size transmission tower truss examples for examination. The
best possible outcome is chosen from 10 independent optimization procedures utilizing an
Intel® CoreTM i7 3600u CPU. To model, analyze, and design examples in accordance with
AISC 360-22, the SAP2000 has been employed. Following that, the optimization framework
is implemented in MATLAB® using the BHMO algorithm. As previously noted, the
properties of the three types of steel material's alloy examined in this multi-material size
optimization in 200 distinct size sections are tabulated in Table 2; The group design
(variables) for each example should be noted as being equal to the number of elements and
also to the material effects as an elemental cost coefficient, as shown in Eq. (1) by Ci.

Table 2: The utilized steel alloys through the current study.

No. Alloy Elasticity Modulus (GPa) Density (Kg/m?3) (MP;)('eld Str(tle(sssi) (Cogzsctient)
1 S350 210 2768 350 52 0.35
2 S500 210 2768 500 73 0.50
3 S700 210 2768 700 102 0.70
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4.1. Transmission Tower 1

In Fig. (2), the configuration of the first real-size example of transmission tower trusses is
depicted which has 72 nodes and 132 element bars.

(a) (b) (c)
Figure 2: The initial configuration of the transmission tower 1: (a) 3D, (b) Front, and (c) Top
views

Also, the nodal coordinates and the elemental connectivity of the example 1 tower
structures are available in Complementary Tables (Tables C1 and C2).

The history of costs for each independent run is tabulated in Table 3, and Fig. (3) shows
the convergence of the best one among the 10 independent runs and Table 4 dedicated how
the BHMO algorithm solved the problem. Furthermore, Fig. (4) and (5) shown that the
solution obtained without violation in terms of elemental stress and nodal displacement, and
finally, Fig. (6) illustrates the schematic of the optimal design of the first example.

Table 3: The optimal cost of the structure achieved by BHMO through each independent
optimization procedure (Example 1)

NFE(%) Runl Run2 Run3 Run4 Runb5 Run 6 Run 7 Run 8 Run 9 Run 10

3 22559 347.10 13285 529.25 40956 1219.34 1178.70 631.28 1293.48 1252.72
6 7256 11210 90.23 100.16  75.48 115.77 459.87  43.59 195.03 104.50
9 50.68 9198 60.66 100.16 59.11 99.12 65.41 14.12 78.83 89.19
12 31.77 9198 36.21 84.87 16.77 19.47 37.69 8.47 36.02 52.89
15 31.77 90.26  36.21 51.24 7.79 18.26 29.69 8.47 24.39 49.12
18 31.77 5324 3538 7.63 7.79 12.87 28.65 8.02 10.03 39.79
21 31.77 51.19 16.68 7.63 7.79 10.66 1181 7.97 9.65 39.79
24 31.77  45.67 12.13 7.63 7.79 8.40 1181 7.76 8.03 38.89
27 31.77  43.90 11.49 7.63 7.79 8.27 9.46 7.69 7.99 38.89
30 2497  43.90 11.49 7.63 7.79 8.27 7.32 7.69 7.99 38.89
33 2497  43.90 11.49 7.63 7.40 8.24 7.32 7.69 7.99 35.52
36 2497  43.90 9.12 7.63 7.40 8.19 7.32 7.68 7.99 35.52
39 24.97 28.87 9.12 7.63 7.40 8.17 7.30 7.68 7.99 35.52
42 24.97 27.21 9.12 7.63 7.37 8.16 7.30 7.68 7.99 35.52

45 24.97 27.21 9.12 7.63 7.37 8.08 7.27 7.68 7.99 35.52
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48 24.97 27.21 9.12 7.63 7.35 8.00 7.27 7.68 7.99 35.09
51 24.97 26.79 9.12 7.63 7.31 8.00 7.27 7.67 7.99 32.35
54 24.97 15.24 9.12 7.62 7.30 8.00 7.27 7.67 7.99 30.22
57 24.97 15.24 9.12 7.62 7.30 7.99 7.27 7.66 7.99 30.22
60 24.97 15.24 8.37 7.62 7.30 7.99 7.27 7.64 7.99 27.95
63 24.97 15.24 8.37 7.56 7.30 7.99 7.27 7.64 7.99 27.95
66 24.97 15.24 8.37 7.56 7.30 7.99 7.27 7.64 7.96 27.95
70 24.97 15.24 8.37 7.54 7.30 7.99 7.27 7.64 7.94 27.95
75 24.97 15.24 8.37 7.54 7.26 7.99 7.27 7.64 7.91 27.95
80 24.97 15.24 7.96 7.54 7.26 7.98 7.27 7.64 7.91 27.95
85 24.97 15.24 7.96 7.54 7.26 7.98 7.27 7.64 7.91 27.95
90 24.97 15.24 7.96 7.53 7.26 7.98 7.27 7.64 7.91 27.95
95 24.97 15.24 7.96 7.51 7.26 7.98 7.27 7.64 7.91 27.95
98 24.97 15.24 7.96 7.47 7.25 7.98 7.27 7.64 7.90 27.95
100 24.97 15.24 7.96 7.47 7.25 7.98 7.27 7.64 7.90 27.95
Grade 1 — Grade 1
—— Grade 2 — G
rade 2
—— Grade 3 —— Grade 3
—— Grade 1
—— Grade 2
—— Grade 3
(b) (c)
Figure 3: The optimized configuration of the transmission tower 1: (a) 3D, (b) Front, and (c) Top
views
1200 — Best
= —— Mean
= 1000 —— Worst
=
= 800 |
&
2 600
e
g 400
£
vn 2001
0 ———
0 20 40 60 80 100

Number of Structural Analysis (%)

Figure 4: The optimization procedure of the transmission tower 1
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Figure 6: The element stress ratio of the transmission tower 1

Table 4: The optimal decision variables of the best solution (Example 1)

Element  Radius Area - Element  Radius Area - Element  Radius Area .
D (cm) (cm?) Material D (cm) (cm?) Material D (cm) (cm?) Material
1 9.70 29559  Grade_2 45 9.80 301.72 Grade_2 89 7.60 181.46  Grade_2
2 9.10 260.16  Grade 2 46 10.60 35299 Grade 2 90 9.00 254.47  Grade_1
3 9.50 28353 Grade_1 47 8.40 221.67 Grade_ 2 91 8.50 226.98 Grade 2
4 1190 444.88 Grade_1 48 8.20 21124 Grade_1 92 1240  483.05 Grade 2
5 4.90 75.43  Grade 2 49 10.40 339.79  Grade 2 93 11.90 44488 Grade 2
6 1230 47529 Grade_3 50 10.30 33329 Grade 2 94 4.00 50.27  Grade_3
7 10.50 346.36  Grade_2 51 12.80 514.72  Grade_2 95 7.30 167.42  Grade_2
8 7.40 172.03 Grade_2 52 8.40 221.67 Grade 2 96 15.20 725.83 Grade 2
9 9.30 271.72  Grade 2 53 6.70 141.03 Grade 2 97 9.70 29559  Grade 2
10 11.70 430.05 Grade_2 54 7.50 176.71  Grade_3 98 11.60 422.73  Grade_1
11 10.20 326.85 Grade 2 55 9.40 27759  Grade 2 99 8.80 24328 Grade 2
12 9.70 29559  Grade 2 56 1260  498.76 Grade 2 100 8.60 232.35 Grade_1
13 10.10 32047  Grade_2 57 13.60 581.07 Grade_2 101 9.60 289.53  Grade_2
14 7.80 191.13 Grade_2 58 8.70 237.79  Grade_2 102 9.70 29559  Grade 2
15 13.80 598.28 Grade 2 59 7.80 191.13 Grade_2 103 10.80 366.44 Grade 2
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Element  Radius Area Material Element  Radius Area Material Element  Radius Area Material
ID (cm) (cm?) ID (cm) (cm?) ID (cm) (cm?)
16 9.10 260.16 Grade_2 60 1460 669.66 Grade_2 104 10.00  314.16 Grade_ 2
17 5.60 98.52 Grade_1 61 15.10 716.31  Grade_2 105 12.70 506.71  Grade_3
18 6.30 12469 Grade_2 62 7.60 181.46 Grade_2 106 11.90 44488  Grade_2
19 11.70 43005 Grade_3 63 6.60 136.85 Grade_2 107 10.00  314.16 Grade_ 2
20 6.20 120.76  Grade_2 64 10.60 352.99 Grade_1 108 8.70 237.79  Grade_1
21 14.70 678.87 Grade_3 65 5.90 109.36  Grade_2 109 7.20 162.86 Grade_3
22 1230 47529 Grade_1 66 1050  346.36  Grade_3 110 1710  918.63 Grade_2
23 8.20 211.24  Grade_3 67 8.60 232.35 Grade_2 111 10.40 339.79 Grade_1
24 13.20 547.39 Grade_1 68 13.40 564.10 Grade_1 112 12.40 483.05 Grade_2
25 1120 39408 Grade_2 69 10.70  359.68 Grade_2 113 11.00  380.13 Grade_2
26 8.10 206.12 Grade_2 70 9.60 289.53 Grade_1 114 10.50  346.36  Grade_1
27 10.00 314.16  Grade_2 71 12.80 514.72  Grade_2 115 10.10 320.47 Grade_2
28 1410 62458 Grade_2 72 12.00 45239 Grade_2 116 1410 62458 Grade_2
29 7.90 196.07 Grade_2 73 7.80 191.13  Grade_2 117 9.10 260.16 Grade_1
30 8.40 221.67 Grade_1 74 1120  394.08 Grade_2 118 6.50 132.73  Grade_3
31 13.70  589.65 Grade_2 75 6.30 12469 Grade_2 119 6.30 12469 Grade_3
32 10.10 32047 Grade_2 76 16.90  897.27 Grade_2 120 9.60 289.53  Grade_2
33 11.70  430.05 Grade_2 77 1110  387.08 Grade_2 121 5.40 91.61 Grade_2
34 14.00 615.75 Grade 3 78 8.20 211.24  Grade 2 122 5.40 91.61 Grade 3
35 10.30 33329 Grade_2 79 1210  459.96 Grade_2 123 3.70 43.01  Grade_1
36 8.30 21642  Grade_2 80 11.00  380.13 Grade_ 2 124 6.40 128.68 Grade_1
37 10.80  366.44 Grade_3 81 8.00 201.06 Grade_2 125 9.60 289.53  Grade_2
38 7.60 181.46  Grade_1 82 1550  754.77 Grade_2 126 8.10 206.12 Grade_3
39 7.20 162.86  Grade_2 83 10.50  346.36  Grade_2 127 11.00  380.13 Grade_2
40 15.70 77437 Grade 1 84 7.40 172,03 Grade 2 128 9.80 301.72 Grade_3
41 9.50 283.53 Grade_2 85 8.70 237.79 Grade_1 129 10.70  359.68 Grade 2
42 1460 669.66 Grade 2 86 8.90 248.85 Grade_3 130 10.00  314.16 Grade 2
43 1330 555.72 Grade_2 87 7.70 186.27 Grade_3 131 8.20 211.24 Grade_2
44 8.60 232.35 Grade 1 88 9.20 265.90 Grade 1 132 5.30 88.25  Grade 2
Structural Cost (Best) 7.2535 Structural Cost (Mean) 12.163
Structural Cost (Worst) 27.9527 Standard Deviation 7.9349

4.2. Transmission Tower 2

A transmission tower truss with 72 elements and 20 nodes is shown in Fig. 7 as the

second

example.

(b)

(©)

Figure 7: The initial configuration of the transmission tower 2: (a) 3D, (b) Front, and (c) Top
views
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As stated before, the optimization process was carried out ten times independently, with
the cost of the trusses used in each run being recorded in Table 5. Similar to Example 1, the
nodal coordinates and the elemental connectivity of the current example are available as
Tables C3 and C4 in Complementary Tables.

Table 5: The optimal cost of the structure achieved by BHMO through each independent
optimization procedure (Example 2)

[ Downloaded from gti.iust.ac.ir on 2025-11-22 |

NFE (%) Run1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
3 290.18 341.33 355.74 807.20 454.38 1206.74 465.93 2254.16 1934.03 2951.59
6 73.47 273.44 105.70 217.70 322.61 191.78 106.24 706.30 537.79 584.14
9 73.47 163.09 105.70 217.70 66.76 183.98 28.14 370.32 450.11 153.73
12 36.74 93.24 81.60 81.78 66.76 137.55 10.15 238.65 434.07 146.37
15 36.74 92.45 81.60 81.78 40.48 120.36 10.08 67.96 401.20 120.05
18 36.74 92.45 81.60 38.66 40.48 88.17 9.65 56.31 401.20 88.36
21 36.74 80.51 54.19 38.66 40.48 88.17 9.45 50.92 386.39 88.36
24 34.13 80.51 54.19 38.66 40.48 77.63 9.29 38.71 386.39 84.21
27 21.88 80.51 54.19 38.66 40.48 55.53 9.07 27.81 386.39 83.13
30 21.88 80.51 54.19 33.38 35.33 39.86 9.00 27.40 386.39 80.05
33 21.88 80.51 32.93 17.47 34.82 31.74 9.00 24.22 386.39 43.82
36 14.98 70.21 32.93 16.40 27.85 22.91 8.93 22.78 381.62 43.82
39 14.98 70.21 32.93 15.72 16.95 21.85 8.88 17.26 381.62 43.82
42 14.98 41.30 32.93 15.72 16.87 21.85 8.83 15.93 381.62 43.82
45 14.98 41.30 32.93 9.41 13.84 21.85 8.82 15.93 381.62 43.82
48 14.98 41.30 32.93 9.08 8.97 21.85 8.81 15.88 381.62 43.82
51 14.98 41.30 32.93 8.88 8.78 21.85 8.81 15.88 381.62 43.82
54 14.98 37.98 17.96 8.88 8.69 21.80 8.81 15.85 345.20 43.82
57 14.98 37.98 17.96 8.83 8.65 20.82 8.80 14.06 305.64 43.82
60 14.98 36.12 16.10 8.83 8.51 20.30 8.80 14.06 305.64 43.82
63 14.98 36.12 15.27 8.83 8.48 19.46 8.80 13.22 303.05 43.82
66 14.98 34.83 9.37 8.83 8.45 19.46 8.79 13.17 297.33 43.82
70 14.98 34.83 9.37 8.63 8.45 19.46 8.79 13.09 297.33 43.82
75 14.98 34.83 9.37 8.63 8.43 19.46 8.78 13.09 297.33 43.82
80 14.98 33.46 9.37 8.63 8.42 19.23 8.78 13.09 199.75 43.82
85 14.98 24.89 9.37 8.63 8.42 19.22 8.78 13.09 193.93 43.82
90 14.98 24.89 9.37 8.63 8.40 19.21 8.77 13.09 193.93 43.82
95 9.09 24.89 9.37 8.58 8.40 16.74 8.77 13.09 193.93 43.82
98 9.09 24.89 9.34 8.40 8.40 16.74 8.77 13.09 193.93 43.82

100 9.09 24.89 9.34 8.40 8.40 16.74 8.77 13.09 193.93 43.82
Structural Cost (Best) 8.397 Structural Cost (Mean) 33.648
Structural Cost (Worst) 193.9303 Standard Deviation 57.413

[ DOI: 10.22068/ijoce.2024.14.4.611 ]

Following that, the history of the convergence of the most optimal procedure is displayed
in Fig. (8), and Table 6 contains the solution of the current example. Finally, Figs. (9) and
(10) confirmed that, with regard to elemental stress and nodal stress handling, respectively,
the outcome of the procedure is without violation. Additionally, Fig. (11) demonstrates a
schematic of a truss in the optimal decision.
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Figure 8: The optimized configuration of the transmission tower 2: (a) 3D, (b) Front, and (c) Top
VIews
Table 6: The optimal decision variables of the best solution (Example 2)
Element ID Radius (cm)  Area (cm?) Material Element ID Radius (cm) Area (cm?  Material
1 14.1 624.58004 Grade 2 37 8.9 248.85 Grade_2
2 11 380.13271 Grade_2 38 9.7 295.59 Grade_2
3 5.9 109.35884 Grade_1 39 11.9 444.88 Grade_2
4 6.4 128.67964 Grade 2 40 7.1 158.37 Grade_2
5 7 153.93804 Grade_2 41 7.4 172.03 Grade_2
6 94 277.59113 Grade_2 42 14.8 688.13 Grade_2
7 18.3 1052.088 Grade_2 43 8.7 237.79 Grade_2
8 12.1 459.96058 Grade_2 44 111 387.08 Grade_2
9 13.6 581.06898 Grade_1 45 11 380.13 Grade_2
10 12.2 467.59465 Grade_2 46 11.2 394.08 Grade_3
11 10 314.15927 Grade_2 47 9.1 260.16 Grade_1
12 9.3 271.71635 Grade_2 48 13.7 589.65 Grade_2
13 11.7 430.05262 Grade_2 49 12.6 498.76 Grade_2
14 6.6 136.84778 Grade_2 50 111 387.08 Grade_2
15 11.2 394.08138 Grade_2 51 12.3 475.29 Grade_2
16 11.9 444.88094 Grade_2 52 7.4 172.03 Grade_2
17 5.9 109.35884 Grade_2 53 15.1 716.31 Grade_2
18 12.1 459.96058 Grade_2 54 8.6 232.35 Grade_2
19 15.3 735.41542 Grade_3 55 10.7 359.68 Grade_3
20 9.5 283.52874 Grade_2 56 7.7 186.27 Grade_2
21 8.7 237.78715 Grade_2 57 111 387.08 Grade_3
22 11.6 422.73271 Grade_2 58 95 283.53 Grade_3
23 11.6 422.73271 Grade_1 59 13 530.93 Grade_2
24 9.3 271.71635 Grade_2 60 8.7 237.79 Grade_2
25 11.9 44488094 Grade_2 61 9.7 295.59 Grade_2
26 10.5 346.36059 Grade_3 62 9.1 260.16 Grade_2
27 131 539.12872 Grade_2 63 13.6 581.07 Grade_2
28 4.8 72.382295 Grade_2 64 9 254.47 Grade_2
29 12.8 514.71854 Grade_2 65 10.6 352.99 Grade_1
30 111 387.07563 Grade_1 66 12.2 467.59 Grade_2
31 12.8 514.71854 Grade_2 67 8.7 237.79 Grade_2
32 114 408.28138 Grade_1 68 8.7 237.79 Grade_2
33 11 380.13271 Grade_2 69 7.2 162.86 Grade_2
34 17.7 984.22956 Grade_1 70 6.3 124.69 Grade_2
35 7.8 191.1345 Grade_2 71 8.6 232.35 Grade_2
36 5.8 105.68318 Grade_2 72 11.7 430.05 Grade 2

[ DOI: 10.22068/ijoce.2024.14.4.611 ]
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Figure 9: The optimization procedure of the transmission tower 2
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Figure 10: The nodal displacement of the transmission tower 2
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Figure 11: The element stress ratio of the transmission tower 2

4.3. Transmission Tower 3

The last numerical example is configured in Fig. (12).
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(a)
Figure 12: The initial configuration of the transmission tower 3: (a) 3D, (b) Front, and (c) Top
views

(b)

(b)
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Table 7 presents the cost results of 10 independent runs, including the best, worst, and
average costs. Finally, the history of the best procedure’s solution among 10 independent
runs demonstrated in Fig. (13) as well as the optimal decision for elements is tabulated in
Table 8. The handling of constraints on the elemental stress and therefore, nodal
displacement, along with the optimum schematic, which are respectively plotted in Figs.
(14-16). The details of the nodal coordinate and element connectivity of Example 3 have
been incorporated in Complementary Tables (Tables C5 and C6).

Table 7. The optimal cost of the structure achieved by BHMO through each independent
optimization procedure (Example 3)

NFE(%) Runl Run?2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
3 7132 46202 73433 746.15 2048.32 92212 177287 3089.86 891.86 3593.14
6 4890  271.33  440.71 368.40  562.83 509.44  613.84 907.67 17243  1204.36
9 48.90 271.33 28445 14747 45263 37285  613.84 45175 13313  633.15
12 48.90 16149 28445 110.97 32028  364.47  546.01 167.87 13043  625.59
15 4890 16149  284.45 97.68 268.13  364.47  384.60 162.76 88.00 536.42
18 4890 16149  194.80 35.14 18156  313.79  355.84 96.77 71.87 494.95
21 4890 16149  194.80 30.82 14491  313.79 99.64 78.93 65.30 482.86
24 4890 16149  186.33 15.55 125.98  280.02 81.26 58.39 58.63 460.27
27 4890 16149  186.33 14.50 125.98  264.08 55.05 49.75 54.81 460.27
30 4890 16149  175.52 14.50 12598  189.75 44.92 35.28 45.16 460.27
33 4835 15040  175.52 14.50 125.98  112.59 35,51 14.67 16.05 446.86
36 4835 15040  175.52 7.77 125.98  112.59 33.99 14.55 16.05 446.86
39 4835 15040  154.52 7.77 125.98 95.64 33.99 14.45 16.05 445.69
42 3792 15040 103.76 7.68 125.98 88.53 33.37 11.20 13.27 445.69
45 3792 15040 103.07 7.54 123.38 88.45 32.50 11.20 13.27 424.49
48 29.64 15040  103.07 7.54 123.38 88.45 32.31 11.20 13.27 414.39
51 29.64 14521  103.07 7.54 123.38 88.45 32.20 11.19 12.77 396.67
54 29.64  136.89  103.07 7.54 123.38 88.45 29.21 11.17 12.77 396.67
57 2797 11599  103.07 7.48 123.38 88.45 27.59 11.17 12.77 396.67
60 2797 11599  103.07 7.48 121.73 88.45 27.45 11.17 12.77 396.67
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NFE(%) Runl Run?2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
63 27.97 110.06 103.07 7.48 121.73 88.45 27.45 11.17 12.77 396.67
66 27.97 110.06 95.96 7.48 121.73 88.45 27.45 11.17 12.77 396.67
70 27.97 73.89 73.81 7.46 121.73 88.45 27.45 11.17 12.77 396.67
75 27.97 73.89 73.81 7.45 121.73 88.45 27.45 11.17 12.77 396.67
80 27.97 73.89 73.58 7.45 121.73 88.45 27.45 11.17 12.77 396.67
85 23.94 73.89 72.42 7.45 121.73 88.45 27.45 11.17 12.77 396.67
90 23.94 73.89 72.42 7.45 121.73 88.45 27.45 11.17 12.77 396.67
95 22.16 73.89 72.42 7.45 121.73 88.45 27.45 11.17 12.77 396.67
98 22.16 49.81 72.42 7.45 121.73 88.45 27.45 11.17 12.77 396.67
100 9.03 46.59 72.42 7.45 121.73 88.45 27.45 11.17 12.77 396.67
Structural Cost (Best) 7.4483 Structural Cost (Mean) 79.374
Structural Cost (Worst) 396.67 Standard Deviation 118.13

—— Grade 1 —— Grade 1
—— Grade 2 —— Grade 2
—— Grade 3 ——Grade 3
(@) (b) (b)

Figure 13. The optimized configuration of the transmission tower 3: (a) 3D, (b) Front, and (c)
Top views

Table 8. The optimal decision variables of the best solution (Example 3)

Element ID  Radius (cm) Area (cm?) Material Element ID  Radius (cm)  Area (cm?) Material
1 10.90 373.25 Grade_2 41 14.80 688.13 Grade_2
2 4.20 55.42 Grade_1 42 14.50 660.52 Grade_1
3 10.50 346.36 Grade_2 43 9.30 271.72 Grade_1
4 7.00 153.94 Grade_3 44 17.50 962.11 Grade_3
5 12.10 459.96 Grade_2 45 12.40 483.05 Grade_2
6 11.60 422.73 Grade_2 46 12.60 498.76 Grade_2
7 15.30 735.42 Grade_2 47 9.50 283.53 Grade_2
8 11.50 415.48 Grade_2 48 15.40 745.06 Grade_2
9 13.90 606.99 Grade_1 49 13.90 606.99 Grade_2
10 13.10 539.13 Grade_3 50 6.00 113.10 Grade_1

11 9.70 295.59 Grade_2 51 5.10 81.71 Grade_3
12 11.80 437.44 Grade_2 52 12.40 483.05 Grade_2
13 16.40 844.96 Grade_1 53 11.40 408.28 Grade_1
14 9.60 289.53 Grade_2 54 9.30 271.72 Grade_2
15 8.50 226.98 Grade_2 55 12.00 452.39 Grade_2
16 12.10 459.96 Grade_2 56 9.80 301.72 Grade_2
17 7.20 162.86 Grade_2 57 8.10 206.12 Grade_2
18 11.10 387.08 Grade_2 58 6.60 136.85 Grade_2
19 13.60 581.07 Grade_2 59 8.80 243.28 Grade_2
20 8.40 221.67 Grade_2 60 10.00 314.16 Grade_2
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Element ID Radius (cm) Area (cm?) Material Element ID Radius (cm) Area (cm?) Material
21 12.00 452.39 Grade_2 61 10.90 373.25 Grade_2
22 14.20 633.47 Grade_2 62 8.90 248.85 Grade_1
23 15.00 706.86 Grade_2 63 5.60 98.52 Grade_2
24 11.90 444.88 Grade_2 64 12.80 514.72 Grade_2
25 16.50 855.30 Grade_1 65 12.10 459.96 Grade_1
26 5.50 95.03 Grade_1 66 9.40 277.59 Grade_2
27 12.10 459.96 Grade_1 67 14.40 651.44 Grade_2
28 9.70 295.59 Grade_1 68 11.60 422.73 Grade_1
29 10.10 320.47 Grade_2 69 4.50 63.62 Grade_1
30 14.90 697.46 Grade_1 70 6.20 120.76 Grade_2
31 12.10 459.96 Grade_3 71 7.10 158.37 Grade_1
32 6.80 145.27 Grade_3 72 15.60 764.54 Grade_2
33 15.60 764.54 Grade_3 73 11.70 430.05 Grade_1
34 14.50 660.52 Grade_1 74 3.70 43.01 Grade_3
35 10.00 314.16 Grade_2 75 13.10 539.13 Grade_1
36 10.70 359.68 Grade_3 76 12.90 522.79 Grade_1
37 12.00 452.39 Grade_2 7 11.40 408.28 Grade_2
38 18.40 1063.62 Grade_2 78 9.00 254.47 Grade_3
39 14.20 633.47 Grade_1 79 9.30 271.72 Grade_2
40 7.90 196.07 Grade_2 80 8.90 248.85 Grade_2
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Figure 14: The optimization procedure of the transmission tower 3
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Figure 15: The nodal displacement of the transmission tower 3
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Figure 16: The element stress ratio of the transmission tower 3

5. CONCLUSION

In the present research, a multi-material size optimization of transmission tower structures is
carried out using the BHMO metaheuristic algorithm. Thus, by taking into account a list of
discrete size variables using a trio of kinds of steel material, three real-size instances of
transmission truss towers were designed and then optimized. In the first example,
characterized by 72 nodes and 132 bar elements and classified as a real-size transmission
tower, the proposed algorithm was employed for optimization, resulting in a notable 46
percent reduction in the total structural cost. In the second example, featuring 72 bar
elements and 20 nodes, optimization yielded an impressive 64 percent reduction in total
structural cost when compared to the initial design. Lastly, the third example, comprising 36
nodes and 80 bar elements and classified as a real-size transmission tower, achieved a
substantial 55 percent optimization in total structural cost relative to conventional design
specifications. Results demonstrate the effectiveness of the BHMO in addressing this
problem. One can design a transmission tower using less costly steel since it not only has a
reduced material density but also results in an optimal design that is lighter.

Future research can examine using the BHMO as a reliable optimizer in machine learning
algorithms as well as other sorts of optimization problems like frame optimization or reverse
optimization problems like damage detection of structures. Additionally, different
metaheuristics may be used to optimize the tree in newly designed transformation tower
trusses.
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